
European Journal of Operational Research 204 (2010) 20–34
Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor
Discrete Optimization

A node rooted flow-based model for the local access network expansion problem

Margarida Corte-Real a,*, Luís Gouveia b

a FEG, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal
b CIO and DEIO, F.C., Universidade de Lisboa, Bloco C6, Piso 4, 1749-016 Lisboa, Portugal

a r t i c l e i n f o
Article history:
Received 31 March 2009
Accepted 2 October 2009
Available online 12 October 2009

Keywords:
Network flows
Local access network
Capacitated Minimum Spanning Tree
Problem
Valid inequalities
0377-2217/$ - see front matter � 2009 Elsevier B.V. A
doi:10.1016/j.ejor.2009.10.001

* Corresponding author. Tel.: +351 226 196 200.
E-mail addresses: mcortereal@porto.ucp.pt, marga
a b s t r a c t

In this paper, we present a new formulation for the local access network expansion problem. Previously,
we have shown that this problem can be seen as an extension of the well-known Capacitated Minimum
Spanning Tree Problem and have presented and tested two flow-based models. By including additional
information on the definition of the variables, we propose a new flow-based model that permits us to
use effectively variable eliminations tests as well as coefficient reduction on some of the constraints.
We present computational results for instances with up to 500 nodes in order to show the advantages
of the new model in comparison with the others.
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1. Introduction

A local access network is composed by a set of customer nodes, a central office and several links that allow the transmission of the traffic
from one customer to another through the central office. The network has a tree structure that connects the customers to the central office,
located at the root of the tree. This work addresses the local access network expansion problem (LANEP), where an existing network must
be adapted to traffic increase either by expanding the capacity of the links and/or by installing concentrators in some nodes. Concentrators
are electronic devices that compress the traffic and can be installed in the network in order to eliminate or reduce the need of the links
expansion. Balakrishnan et al. (1991) and, more recently, Carpenter and Luss (2006) have presented the main characteristics of several
problems arising in the context of access network planning. Some variants of the local access network expansion problem have also been
considered in the literature, with different kinds of concentrators and transmission links and for single and multi-period versions (see, for
instance, Bienstock (1993), Lee (1993), Balakrishnan et al. (1995), Cho and Shaw (1996, 1998), and Flippo et al. (2000) for single-period
versions of the problem and Jack et al. (1992), Shulman and Vachani (1993), Gendreau et al. (2006) and Kouassi et al. (2009) for multi-
period versions).

The problem we address here is the expansion of a local access network with a fixed tree topology. We consider the single time period
version of the problem, where we want to determine, with minimum cost, which links need to be expanded and/or where the concentra-
tors should be located in order to guarantee that the node demands can be sent to (or from) the central office. We consider the version of
the problem with uncapacitated concentrators. It was shown in Corte-Real and Gouveia (2007) that the LANEP could be seen as an exten-
sion of the well-known Capacitated Minimum Spanning Tree Problem (CMSTP) (see, for instance, Gavish (1993) and Gouveia and Lopes
(2000)) and, as a consequence, two flow-based models were proposed and tested for the LANEP. These two models, denoted by FA and
FD, are characterized respectively by aggregated and disaggregated flows that circulate in the links and are augmented versions of models
originally developed for the CMSTP. In this paper we review the FA model and present a new flow-based model that adds information on
the first node of each feasible path in the graph (that corresponds to the central office or to a concentrator). As we shall show, this addi-
tional information permits us to create a model with a linear programming relaxation that is substantially tighter than the linear program-
ming relaxation of the FA model. Furthermore, the new information on the variables permits us to use effectively variable elimination tests
as well as coefficient reduction on some of the constraints of the new model. These features lead to more solution methods for the problem
which are, in general, more efficient than the ones based on the previous FA and FD models.
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The paper is organized as follows. Section 2 defines the problem and presents the assumptions that are usually given for the problem. In
Section 3 we review how the LANEP can be seen as an extension of the CMSTP and review the aggregated flow model FA as well as some
valid inequalities presented in Corte-Real and Gouveia (2007). We also introduce new inequalities that permit us to improve the linear
programming relaxation of the FA model. In Section 3.3 we make a brief reference to the disaggregated flow model FD. In Section 4 we
present the new model, the Node Rooted Aggregated Flow model denoted by NRFA, and develop several sets of valid inequalities that
are based on the definition of new variables and that improve considerably the linear programming relaxation of the original model.
We analyse the inequalities introduced for the FA model and show that several of them are redundant in the linear programming relaxation
of the new model. Section 5 gives some computational results to evaluate the efficiency of the proposed models: in Section 5.1 some pre-
processing techniques for variables elimination and coefficient reduction are described and Section 5.2 presents several computational re-
sults to compare the three classes of models from a set of tests with 100, 200 and 500 nodes. The last section presents some conclusions.

2. Problem description

A local access network is composed by a set of customer nodes, a central office and several links that allow the transmission of the traffic
from one customer to another through the central office. The network has, in general, a fixed tree structure (neither nodes nor edges can be
added) where the central office is the root of the tree and all the other nodes represent the customer nodes. Concentrators that compress
the traffic can be installed in the customer nodes. The edges of the network correspond to the existent links between the customer nodes. In
the local access network expansion problem, due to traffic demand increase, we need to expand the given network either through the
installation of concentrators at the nodes or through the expansion of the capacity on the links. To each link we associate an available
capacity that identifies the amount of information that can circulate initially on the link, a maximum capacity that corresponds to the max-
imum amount of traffic that will be able to circulate on the link after expanding the network and the costs of its expansion. To each node,
we associate its demand and the costs of locating a concentrator.

Let T ¼ ðN; EÞ be the tree defining the local access network, let N ¼ f1; . . . ;ng be the corresponding node set (node 1 is the root of the tree
and represents the central office node) and let E be the edge set of the tree (corresponding to the existing links between customer nodes).
For each node j, let dj be the corresponding demand and let Fj and cj be, respectively, the fixed and variable costs of installing a concentrator
at that node. For each edge ði; jÞ, we associate the available capacity Bij and the maximum capacity Mij which corresponds to an upper bound
on the traffic that will be able to circulate on the edge after expanding the network (this value can be equal to the total demand of the tree).
We also define a fixed cost Gij and a variable cost eij, corresponding to the expansion of the link ði; jÞ.

Given the demand in each node, the capacities and costs related to each edge and the concentrators costs, the local access network
expansion problem is to determine, with minimum cost, which edges need to be expanded and/or where the concentrators should be lo-
cated in order to guarantee that the node demands can be sent to (or from) the root node. We consider the following assumptions, already
stated in, Balakrishnan et al. (1995), Cho and Shaw (1996, 1998), Flippo et al. (2000) and Corte-Real and Gouveia (2007):

� The information is concentrated once, either by one concentrator or by the central office (the central office can be viewed as a concen-
trator with zero costs);

� The demand of each node is unsplitted, that is, all the demand is processed by only a single concentrator or by the central office;
� If the demand of a node i is processed by a given concentrator, the demand of every node in the path from node i to the concentrator is

also processed by the same concentrator (called contiguity restriction);
� The demand processed by a given concentrator is transmitted to the central office through the original links of the network (and the

capacity used is considered insignificant) or by a direct link to the central node (in this case, the corresponding transmission cost is
incorporated in the fixed cost of the concentrator).

The problem has been extensively studied by Balakrishnan et al. (1995), which state that the problem is NP-hard. They present a method
that combines lagrangian relaxation with a dynamic programming algorithm in order to generate upper and lower bounds on the optimal
value of the problem. Later on, Flippo et al. (2000) presented a pseudo-polynomial dynamic programming algorithm for the problem which
depends on a constant value B that represents an upper bound on the capacity of the concentrators. Their algorithm solves the problem in
OðnB2Þ time and OðnBÞ storage space (where n refers to the size of the network) and considers more general cost structures for links expan-
sion and concentrators installation. For the case with uncapacitated concentrators that we are considering, the parameter B is set equal to
the total demand (as the authors of that paper suggest). The computational experience shown in Corte-Real and Gouveia (2007) gives
empirical evidence that the flow-based models should be, in general, preferred when compared with the dynamic programming approach
for the uncapacitated version of the problem.

3. Graph transformation and flow-based models

3.1. Graph transformation and the FA model (Corte-Real and Gouveia, 2007)

In this section, we review the approach described in Corte-Real and Gouveia (2007). With the inclusion of an additional node 0 and
edges ð0; jÞ for each node j 2 N (denoted by auxiliary edges), we transform the problem under study into an extension of the CMSTP. Given
the tree T, node and edge sets N and E as presented in the previous section, we define a new graph T0, obtained from T by adding the new
node and the new edges, as described in Fig. 1. Let N0 denote the node set in T0 and let E0 denote the corresponding edge set.

When an edge ð0; jÞ is included in the solution in T0, it means that a concentrator is located at node j. The total demand served by that
concentrator in T is represented by the flow in the edge ð0; jÞ in T0. Since the inclusion of each one of these edges in T0 corresponds to the
installation of one concentrator in T, the corresponding available edge capacity B0j must be unlimited and these edges are not included in
the set of edges to be expanded. For j 2 N, we also define the coefficient M0j as an upper bound on the traffic that can be served by the con-
centrator located at j. Two costs are associated with the new edges ð0; jÞ: one corresponding to the fixed cost of installing one concentrator



Fig. 1. Structure of: (a) T and (b) T0.
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at j; Fj, and the other corresponding to the variable cost cj, which depends on the amount of flow that circulates through the edge. Fig. 2
illustrates a feasible solution in T and the corresponding feasible solution in T0. As we can see, this solution is a spanning tree in the new
graph.

The representation of the problem given by the new graph permits us to model the problem as a capacitated network flow model in T0.
Since a powerful modelling construct to improve formulations for several network design problems is to ‘‘direct the given network” (see,
for instance, Goemans and Myung (1993) and Magnanti and Wolsey (1995)), we model our problem in a directed graph D0 ¼ ðN0;A0Þ,
where N0 denotes the set of nodes and A0 the set of all arcs, as described next: each edge ði; jÞ in E0 is replaced by two arcs, hi; ji and
hj; ii, with the same parameters as the original edge (the exception are edges of the form ð1; jÞ and ð0; jÞ that are replaced only by one single
arc, h1; ji and h0; ji, respectively, since we consider that the traffic flows from the central office/concentrators to the nodes). The arcs of the
form h0; ji, for each node j 2 N, are designated as auxiliary arcs. The set A corresponds to the set of arcs without the auxiliary arcs.

Based on this representation, Corte-Real and Gouveia (2007) has described an adaptation for the new problem of a single-commodity
model originally proposed for the CMSTP. We define, for each arc hi; ji 2 A0, the binary variable xij indicating whether or not the arc hi; ji is
included in the solution and a nonnegative variable yij, indicating the amount of flow that circulates in the arc. For each arc hi; ji 2 A, let zij

denote the binary variable indicating whether or not the arc hi; ji is expanded and sij a nonnegative variable indicating the added capacity to
the arc. The basic directed single-commodity flow formulation, denoted by FA0, is as follows:
Minimize
Xn

j¼1

Fjx0j þ
Xn

j¼1

cjy0j þ
X
hi;ji2A

Gijzij þ
X
hi;ji2A

eijsij

subject to
X

i:hi;ji2A0

xij ¼ 1 8j 2 N; ð1Þ
X

i:hi;ji2A0

yij �
X

i:hj;ii2A

yji ¼ dj 8j 2 N; ð2Þ

zij 6 xij 8hi; ji 2 A; ð3Þ
yij 6 Bijxij þ sij 8hi; ji 2 A; ð4Þ
y0j 6 M0jx0j 8j 2 N; ð5Þ
sij 6 ðMij � BijÞzij 8hi; ji 2 A; ð6Þ
xij 2 f0;1g; yij P 0 8hi; ji 2 A0; zij 2 f0;1g; sij P 0 8hi; ji 2 A: ð7Þ
Constraints (1) ensure that each node, except node 0, has only one incident arc and constraints (2) are the flow conservation con-
straints, guaranteeing that each node j receives dj units. Constraints (3) ensure that an arc in A is expanded only if it is used. For each
one of these arcs, constraints (4) guarantee that the flow in any arc is less or equal than the available capacity plus the added capacity.
For the auxiliary arcs h0; ji, constraints (5) state that the flow value is less or equal than the maximum capacity M0j. Constraints (6) de-
fine an upper bound on the added capacity to the expanded links (the maximum demand that can circulate in the arc minus the cor-
responding available capacity). The last set represents the variables domain. The objective function states that we want to minimize the
sum of the concentrator costs together with the link expansion costs. Note that constraints (4) and (6) together with (3) guarantee that
Fig. 2. Feasible solution in: (a) T and (b) T0.
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the constraints yij 6 Mijxij 8hi; ji 2 A are verified and that is why they were not explicitly included. These constraints together with (5),
(1), (2), and the nonnegativity constraints (7), guarantee that the set of arcs defined by the x variables equal to 1 define a spanning tree
in the graph D0.

In order to improve the optimal solution of the linear programming relaxation of FA0, several sets of valid inequalities were described in
Corte-Real and Gouveia (2007). As these inequalities are needed for comparing with some of the inequalities for the new NRFA model, we
make a brief review of them.

As noted in Corte-Real and Gouveia (2007), subtour elimination constraints are satisfied by the solutions of the problem. In particular,
the linear programming relaxation of the model was substantially improved by adding the simple 2-subtour elimination constraints:
xij þ xji 6 1 8ði; jÞ 2 E; i; j – 1: ð8Þ
Another interesting class of inequalities is based on the concept of Saturated Nodes (originally introduced in Balakrishnan et al. (1995)).
We recall that a node j is saturated if the total demand in the subtree rooted at node j, which is denoted by DðjÞ, is greater than the available
capacity in the arc that connects the predecessor of j; aj, to j. Let Ns be the set of saturated nodes and let TðjÞ be the subtree rooted at node j.
Two sets of constraints, based on the concept of saturated nodes, are as follows:
X

k2TðjÞ
x0k þ zajj P 1 8j 2 Ns; ð9Þ

ðDðjÞ � BajjÞ
X

k2TðjÞ
x0k

0
@

1
Aþ sajj P ðDðjÞ � BajjÞ 8j 2 Ns: ð10Þ
For each saturated node j, constraints (9) guarantee that either we install at least one concentrator in the subtree rooted at j or we ex-
pand the arc that converges into node j; constraints (10) ensure that, if no concentrator is installed in that subtree, the expanded capacity
must be greater or equal than the difference of the total demand DðjÞ and the available capacity of the arc.

3.2. New inequalities – inequalities that give lower and upper bounds on the value of the arcs

In this paper, we introduce new inequalities that are lower and upper bounding inequalities on the value of the arc flows and that gen-
eralize, in some sense, simple lower and upper bounding flow inequalities.

Since the value of the flow on arc hi; jimust satisfy at least the demand of that node, we have the following well-known lower bounding
inequalities, already used in Corte-Real and Gouveia (2007):
yij P djxij 8hi; ji 2 A0: ð11Þ
Similar and more general inequalities, originally described in Gouveia and Lopes (2000), that consider one or all the arcs diverging from
node j are also valid to the problem and were used in Corte-Real and Gouveia (2007). Here, we present stronger versions of these
inequalities:
yij P ðdj þ dkÞxij þ dkðxjk þ xkj � 1Þ 8hi; ji 2 A0; hj; ki 2 A ðk – iÞ; ð12Þ

yij P dj þ
X

k:hj;ki2A;k – i

dk

 !
xij þ

X
k:hj;ki2A;k – i

dkðxjk þ xkj � 1Þ 8hi; ji 2 A0: ð13Þ
These inequalities differ from the versions presented in Corte-Real and Gouveia (2007) and Gouveia and Lopes (2000) due to the extra xkj

term involved in the right hand-side summation terms.

Result 3.1. Inequalities (12) and (13) are valid for the LANEP.

Proof. For simplicity we only proof the validity of (12) since the proof of (13) is similar. Since (12) is known to be valid when xkj ¼ 0, we
only need to address the case with xkj ¼ 1. But then, by (1), xij ¼ 0 and yij ¼ 0 by constraints yij 6 Mijxij 8hi; ji 2 A0. The inequality becomes
xjk þ xkj 6 1 which is valid. h

It can be easily proved that the inclusion of (13) does not imply that constraints (11) and (12) become redundant in the linear program-
ming relaxation of FA0 or that the inclusion of (12) implies the redundancy of (11). Thus, using both sets together with (11) might lead to
better linear programming bounds and this is confirmed by our results.

We introduce, next, new inequalities that are upper bounding analogues of the previous inequalities. In order to introduce these general
upper bounding inequalities, we define more precisely the Mij coefficients that appear in constraints (6). Since, for each arc hi; ji the cor-
responding coefficient represents the maximum capacity that can circulate in arc hi; ji, its value can be made equal to the total demand of
the nodes that can be served through the arc (see Corte-Real and Gouveia (2007)). If some nodes are disconnected from the arc by the elim-
ination of some arcs from the graph, this coefficient value can be further reduced.

In a similar way as was previously developed for the lower bounding inequalities, we develop upper bounding inequalities related to the
flow in each arc hi; ji. Consider the following inequalities:
yij 6 ðMij �MjkÞxij þMjkxjk 8hi; ji 2 A0; hj; ki 2 Aðk – iÞ: ð14Þ
As done previously with (12) to obtain (13), we can adapt constraints (14) in order to include all the diverging arcs from node j leading
to
yij 6 djxij þ
X

k:hj;ki2A;k – i

Mjkxjk 8hi; ji 2 A0: ð15Þ
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Result 3.2. Inequalities (14) and (15) are valid for the LANEP.

Proof. Again, we only provide the proof of the validity of (14) since the proof of (15) is similar. Consider the following three cases: (i) if
xij ¼ xjk ¼ 1, we get yij 6 Mij, which is valid as referred before (part (a) of Fig. 3); (ii) if xij ¼ 1 and xjk ¼ 0, yij 6 Mij �Mjk, which is valid
because the Mjk coefficient includes the demand of all nodes of the ‘‘subtree rooted in k” and these nodes cannot be served through arc
hi; ji; Mij �Mjk is then an upper bound on the flow value that circulates in hi; ji (part (b) of Fig. 3); (iii) if xij ¼ 0, we get yij ¼ 0 from
yij 6 Mijxij 8hi; ji 2 A0, and thus xjk P 0, which is valid from the nonnegativity constraints (7). h

Similarly to what was stated before for the lower bounding inequalities, the inclusion of (15) in FA0 formulation does not make (14)
redundant in the linear programming relaxation of FA0.

Finally, we can create constraints that are similar to the previously given constraints sij 6 ðMij � BijÞzij 8hi; ji 2 A (6):
sij 6 ðMij �Mjk � BijÞzij þMjkxjk 8hi; ji; hj; ki 2 A ðk – iÞ; ð16Þ
sij 6 ðdj � BijÞzij þ

X
k:hk;ji2A;k – i

Mjkxjk 8hi; ji 2 A; ð17Þ
which consider, respectively, one or all the arcs diverging from node j.

Result 3.3. Inequalities (16) and (17) are valid for the LANEP.

Proof. Similarly to previous results, we only prove the validity of (16). Consider the following three cases: (i) if zij ¼ 1 and xjk ¼ 1, the
inequality becomes sij 6 Mij � Bij, which is valid due to (6); (ii) if zij ¼ 1 and xjk ¼ 0, we get sij 6 Mij �Mjk � Bij; since the arc hj; ki is not
in the solution, the maximum value of the flow that can circulate in hi; ji is given by Mij �Mjk and the added capacity to the arc must
be less or equal than this maximum flow value minus the available capacity; (iii) if zij ¼ 0, we get sij ¼ 0 from (6) and (7) and Mjkxjk is
always nonnegative. h

The following result shows that inequalities (16) and (17) imply constraints (14) and (15), respectively. Thus, only the inequalities (14)
and (15) corresponding to auxiliary arcs are considered for augmenting the FA0 formulation.

Result 3.4. (i) For each arc hi; ji 2 A and each arc hj; ki 2 A (with k – iÞ, inequality (16) implies inequality (14) and (ii) for each arc hi; ji 2 A,
inequality (17) implies inequality (15).

Proof. (i) Let hi; ji and hj; ki be two arcs in A (with k – iÞ. By combining (4) for the arc hi; ji with (16), for hi; ji and hj; ki, we obtain
yij 6 Bijxij þ ðMij �Mjk � BijÞzij þMjkxjk. By combining this inequality with (3) for the same hi; ji, we obtain yij 6 ðMij �MjkÞxij þMjkxjk as
desired. The proof of (ii) is similar. h

To illustrate that the inclusion of several of these valid inequalities can improve the linear programming relaxation of FA0, we introduce
the following example where a local access network with 10 nodes is considered.

Example 3.1. Consider the local access network with 10 nodes denoted by tree 10 and shown in Fig. 4, whose structure is represented in (a)
and the associated parameters in (b).

Table 1 depicts the linear programming bound obtained with FA0 formulation and the same formulation augmented with the different
sets of the inequalities presented before. Several combinations were performed but, for simplicity, we have chosen the eight formulations
presented in the table and easily identified by the designation at the top of each column. Table 1 includes two more columns, the first one
characterizes the instance considered and the last one gives the optimal cost. We have also included the results taken from the instances
tree 10_Fx2 and tree 10_Bx2, obtained from tree 10 by, respectively, doubling the fixed cost of installing the concentrators and doubling the
available capacity of the links.
Fig. 3. Upper bound on the flow value in arc hi; ji: (a) Mij , if hj; ki is in the solution (b) Mij �Mjk , otherwise.

Fig. 4. Instance tree10: (a) network configuration and (b) parameters.



Table 1
Linear programming bound of FA0 formulation with the inclusion of different sets of valid inequalities.

Instance FA0 FA0 + (8) +
(9) + (10)

FA0 + (11) FA0 + (11) + (12) FA0 + (11) +
(12) + (13)

FA0 + (11) + (12) +
(13) + (14) + (15)

FA0 + (11) + (12) + (13) + (14) +
(15) + (16) + (17)

FA1 Opt.

tree10 1522.6 2041.1 2012.4 2130.7 2161.7 2169.2 2170.5 2170.5 2280
tree10_Fx2 1616.7 2303.7 2123.6 2301.1 2504.9 2520.5 2521.9 2527.1 2620
tree10_Bx2 1396.2 1693.2 1544.9 1562.2 1597.5 1658.3 1665.6 1704.6 1740
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The results on the Table 1 show that the several sets of inequalities previously discussed improve the cost of the linear programming
solution presented in column ‘‘FA0”. The second formulation represents the FA0 formulation augmented with the 2-subtour elimination
constraints and the constraints based on the saturated nodes. The next three show the effect of the inclusion of the lower bounding
inequalities: the simple ones (11) and the more general inequalities (12) and (13). In the next two columns we include the lower and upper
bounding inequalities (in the last case, the upper bounding inequalities (14) and (15) are included only for the auxiliary arcs). The last col-
umn ‘‘FA1” gives the FA0 formulation augmented with all the inequalities presented.

3.3. Disaggregated flow model – FD (Corte-Real and Gouveia, 2007)

We now make a brief reference to the FD model, the multi-commodity version of the FA model presented in Corte-Real and Gouveia
(2007). As it is well-known, the linear programming relaxation of a single-commodity formulation can be strengthened by reformulating
as a so-called multi-commodity formulation where the flow variables are indexed by source and/or destination (see, for instance, Magnanti
and Wong (1984) and Rardin and Choe (1979)). The disaggregated flow model FD uses flow variables f p

ij indexed by destination, for each arc
hi; ji and node p, that specify the amount of flow in hi; ji sent from node 0 to p. We denote by FD0 the initial formulation, adapted directly
from FA0 with the new flow variables and the inclusion of the inequalities f p

ij 6 dpxij 8hi; ji 2 A0; p 2 N, that characterizes the multi-com-
modity models (the reader is referred to Corte-Real and Gouveia (2007) for a detailed description of the FD model). The FD1 formulation
is the formulation FD0 augmented with similar inequalities to the ones presented before, non-redundant however to the linear program-
ming relaxation of FD0. In Section 5 we include the results obtained with these two formulations.

4. Node rooted aggregated flow model – NRFA

4.1. The model

The idea of the new model is to add information about the first node on each feasible path leaving the root. Recall that, for any two nodes
p and jðp; j – 0Þ, if the demand of node j is processed by the concentrator located at node p in T (Fig. 5a), the demand of every node in the
path from the concentrator to node j is also processed by the same concentrator (by the contiguity restriction) and the path from p to j must
be in the solution in D0 (Fig. 5b).

The information about the first node on each feasible path permits us to define new variables and a new coefficient Mp
ij that corresponds

to an upper bound on the required capacity for arc hi; ji, when the directed path rooted at node p includes arc hi; ji. For some values of p this
bound may be smaller than the one given by Mij and used in the previous model, leading to an improved linear programming relaxation.
Recall that the upper bound Mij on the capacity required on arc hi; ji is defined by the sum of the demands of the nodes that can be served
through the arc. In this case, the concentrator that sends this traffic is not known in advance and the Mij value is the sum of the node de-
mands reachable from arc hi; ji (Fig. 6a). To define the new coefficients, let p 2 N and hi; ji 2 A such that the directed path from p to j includes
arc hi; ji. The value of the maximum flow that can circulate on arc hi; ji sent by node p is equal to the sum of the demand of the nodes reach-
able from arc hi; ji that can be served by the concentrator located at p. This value will be denoted by Mp

ij. If, by the elimination of some arcs,
some paths or some node to concentrator assignments, we can show that node p cannot serve some of those nodes in any optimal solution,
then the Mp

ij value for some indexes p may become less than the Mij coefficient (Fig. 6b). For the auxiliary arc h0; ji, we define as before the
coefficient M0j as the total demand that can be served by the concentrator located at j.

The model uses binary variables xp
ij indicating whether or not arc hi; ji 2 A is included in a directed path rooted at node p (if xp

ij ¼ 1, nodes
i and j are assigned to the concentrator located at node pÞ. These variables are defined for each pair ðp; hi; jiÞ only if the directed path from p
Fig. 5. (a) Concentrator at node p process node j demand in T (b) h0; pi is in the solution in D0 and node p process node j demand and all the demand of the nodes from the path
from p to j.



Fig. 6. (a) Mij coefficient (b) Mp
ij coefficient, assuming that p cannot serve nodes v1 and v2 demand.
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to j traverses arc hi; ji. In a similar way, we define nonnegative flow variables yp
ij indicating the amount of flow sent from the concentrator at

node p that circulates in arc hi; ji. For the auxiliary arcs, we define the binary variables x0j indicating whether or not a concentrator is located
at node j and the flow variables y0j indicating the total demand served by that concentrator. To model the expansion of the links, we define
the binary variables zp

ij indicating whether or not arc hi; ji, belonging to the directed path rooted at p, is expanded and the nonnegative vari-
ables sp

ij denoting the respective expanded amount of flow. Note that the new and the variables of the FA model are related as follows:
Xn

p¼1

xp
ij ¼ xij;

Xn

p¼1

yp
ij ¼ yij;

Xn

p¼1

zp
ij ¼ zij and

Xn

p¼1

sp
ij ¼ sij: ð18Þ
The summation terms in these expressions can be simplified by noting that the index ‘‘p” is not considered whenever i or j cannot be
served by the concentrator located at node p.

The formulation, denoted by NRFA, involving the new variables is as follows:
Minimize
Xn

j¼1

Fjx0j þ
Xn

j¼1

cjy0j þ
X
hi;ji2A

Xn

p¼1

Gijz
p
ij þ

X
hi;ji2A

Xn

p¼1

eijs
p
ij

subject to
X

i:hi;ji2A0

Xn

p¼1

xp
ij ¼ 1 8j 2 N; ð19Þ

X
i:hi;ji2A0

yp
ij �

X
i:hj;ii2A

yp
ji ¼ dj;

X
i:hi;ji2A0

xp
ij 8j 2 N 8p 2 N; ð20Þ

zp
ij 6 xp

ij 8hi; ji 2 A 8p 2 N; ð21Þ
yp

ij 6 Bijx
p
ij þ sp

ij 8hi; ji 2 A 8p 2 N; ð22Þ
y0j 6 M0jx0j 8j 2 N; ð23Þ

sp
ij 6 Mp

ij � Bij

� �
zp

ij 8hi; ji 2 A 8p 2 N; ð24Þ

xp
ij 2 f0;1g; yp

ij P 0 8hi; ji 2 A0; p 2 N; zp
ij 2 f0;1g; sp

ij P 0 8hi; ji 2 A; p 2 N: ð25Þ
We omit the description of the objective function and constraints in the new model since it can be taken from the description of the
constraints in the FA model and the constraints (18) linking the two sets of variables. Note the new coefficients Mp

ij appearing in constraints
(24). Recall that these coefficients may become smaller than the corresponding coefficient in the FA model when it is known that node p
(the corresponding concentrator) will not serve some nodes in the tree. Although the new model includes many more variables and con-
straints than the FA model, the proposed pre-processing permits us to eliminate several directed paths and consequently eliminate many
variables and constraints as well as reduce the value of the Mp

ij coefficient (in fact, it was the pre-processing leading to a reduction in the Mp
ij

coefficients that has motivated this model).

Result 4.1. The linear programming relaxation value of the NRFA formulation is greater or equal than the linear programming relaxation
bound of the FA0 formulation.

Proof. The result follows simply from the fact that by using (18), the constraints of the NRFA model imply the constraints of the FA model
(note that Mp

ij 6 Mij; 8p 2 N and all arcs hi; jiÞ. The objective functions are the same after using (18). h

The computational results show that in general, the NRFA model already produces better lower bounds. However, the linear program-
ming relaxation of the new model can be substantially improved by using the information attached to the new variables in order to derive
new sets of inequalities:
xp
pk 6 x0p 8hp; ki 2 A; ð26Þ

xp
ij 6 xp

pii
8hi; ji 2 A 8p 2 N n fig; ð27Þ



M. Corte-Real, L. Gouveia / European Journal of Operational Research 204 (2010) 20–34 27
where node pi is the predecessor of node i in the directed path from p to i. The constraints in the first set guarantee that if the arc hp; ki is
served by node p (it means that the nodes associated to the arc are served by node pÞ a concentrator must be located at p and the constraints
in the second set state, explicitly, the contiguity restriction for the arc hi; ji and the arc hpi; ii. The proof of the following result follows imme-
diately from these arguments.

Result 4.2. Inequalities (26) and (27) are valid for the LANEP.

Note that (26) and (27) guarantee that xp
ij 6 x0p;8hi; ji 2 A;8p 2 N, which, in turn, guarantee that a concentrator will be located at node p

if this node serves arc hi; ji. The valid inequalities (26) and (27) are included in the NRFA formulation in order to improve its linear program-
ming relaxation. We denote by NRFA0 the formulation obtained in this way.

4.2. Valid inequalities ‘‘adapted” from the FA model

In this subsection, we describe another interesting feature of the new formulation. Namely, we introduce valid inequalities that are similar
to the ones introduced for the FA model and show that several of them are redundant in the linear programming relaxation of the NRFA0 model.

4.2.1. 2-subtour elimination constraints
Using the relation between the new and old variables, the 2-subtour elimination constraints (8) can be rewritten as
Xn

p¼1

xp
ij þ

Xn

p¼1

xp
ji 6 1 8ði; jÞ 2 E; i; j – 1: ð28Þ
Result 4.3. Inequalities (28) are redundant to the linear programming relaxation of NRFA0.

Proof. Let ði; jÞ 2 E with i; j – 1. Using constraints (19) for node j, the left-hand side of (28) can be rewritten asPn
p¼1xp

ij þ
Pn

p¼1xp
ji ¼ 1� x0j �

P
k:hk;ji2A;k – i

Pn
p¼1

p:k2Ppj

xp
kj þ xj

ji þ
Pn

p¼1
p:j2Ppi ;p – j

xp
ji, where Ppv denotes the directed path from node p to node v.

Now, if we add constraints (27) for hj; ii and all p – j such that j is in the path from p to i, we obtainPn
p¼1

p:j2Ppi ;p – j
xp

ji 6
Pn

p¼1
p:j2Ppi

xp
pjj
¼
P

k:hk;ji2A;k – i
Pn

p¼1
p:k2Ppj

xp
kj, and constraint (26) implies xj

ji 6 x0j. Combining these two inequalities with the

previous expression gives the desired inequality. h
4.2.2. Inequalities based on saturated nodes
The inequalities based on saturated nodes can be simply rewritten for the new model by using the relation between the new and old

variables (for this case, we were unable to write disaggregated constraints as we did for many other inequalities): thus, for each j 2 Ns, we
consider
X

k2TðjÞ
x0k þ

Xn

p¼1

zp
ajj

P 1; ð29Þ

ðDðjÞ � BajjÞ
X

k2TðjÞ
x0k

0
@

1
AþXn

p¼1

sp
ajj

P DðjÞ � Bajj: ð30Þ
4.2.3. Lower and upper bounding inequalities
We now analyse the lower bounding inequalities introduced before. These inequalities can be adapted to the new model by using the

relation between the new and old variables or by considering their disaggregated versions. We consider the disaggregated versions to each
of the inequalities presented before. We shall prove that several of the adapted inequalities are redundant to the linear programming relax-
ation of NRFA0.

Before presenting these inequalities and the redundancy of the results we make the following important observation.
Observation: Let p; j 2 N: (i) If p – j, then

P
k:hk;ji2A0

xp
kj ¼ xp

ij and
P

k:hk;ji2A0
yp

kj ¼ yp
ij, where hi; ji denotes the arc hpj; ji; (ii) If p ¼ j,

then
P

k:hk;ji2A0
xp

kj ¼ x0j and
P

k:hk;ji2A0
yp

kj ¼ y0j (note that in (i) we are considering the directed path from p to j which has only one incident
arc in j and (ii) represent the situation where node j is served by a concentrator located at this node).

The disaggregated version of constraints (11)–(13) are, respectively, constraints:
yp
ij P djx

p
ij 8hi; ji 2 A0 8p 2 N; ð31Þ

yp
ij P ðdj þ dkÞxp

ij þ dkðxp
jk � 1Þ 8hi; ji 2 A0; hj; ki 2 Aðk – iÞ 8p 2 N; ð32Þ

yp
ij P dj þ

X
k:hj;ki2A;k – i

dk

 !
xp

ij þ
X

k:hj;ki2A;k – i

dkðxp
jk � 1Þ 8hi; ji 2 A0 8p 2 N: ð33Þ
Note that we cannot include in (32) and (33) the xp
kj term (as we did for the aggregated versions in FA) because this variable is not de-

fined in the new model. Note also that as observed before, these constraints are defined only for specific triples (or m-tuples) of nodes.

Result 4.4. Inequalities (31)–(33) are redundant in the linear programming relaxation of NRFA0.

Proof. We start by proving that constraints (31) are redundant to the linear programming relaxation of NRFA0. Let p 2 N and hi; ji 2 A0.
Assume p – j. Using the observation, the flow conservation constraints (20) become yp

ij ¼ djx
p
ij þ

P
k:hj;ki2A;k – iy

p
jk. The nonnegativity of the

flow variables gives the desired inequality yp
ij P djx

p
ij. A similar argument is used when p ¼ j, leading to y0j P djx0j.
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With respect to (32), note also that, for p – j and k – i, the expression yp
ij ¼ djx

p
ij þ

P
v :hj;vi2A;v – iy

p
jv can be rewritten as

yp
ij ¼ djx

p
ij þ yp

jk þ
P

v :hj;vi2A;v – i;kyp
jv and yp

ij P djx
p
ij þ yp

jk. Using (31) in the previous expression (note that j is in the path from node p to

node kÞwe obtain yp
ij P djx

p
ij þ dkxp

jk. Since dk xp
ij � 1

� �
6 0, the previous inequality implies yp

ij P djx
p
ij þ dkxp

jk þ dk xp
ij � 1

� �
, which is the same

as the desired inequality yp
ij P ðdj þ dkÞxp

ij þ dk xp
jk � 1

� �
. A similar analysis holds when p ¼ j.

The proof of (33) is similar and we omit it from the paper. h

The disaggregated version of the constraints (14) and (15) are, respectively, the constraints:
Table 2
Linear p

Insta

tree1
tree1
tree1
yp
ij 6 Mp

ij �Mp
jk

� �
xp

ij þMp
jkxp

jk 8hi; ji 2 A0; hj; ki 2 Aðk – iÞ 8p 2 N; ð34Þ

yp
ij 6 djx

p
ij þ

X
k:hj;ki2A;k – i

Mp
jkxp

jk 8hi; ji 2 A0 8p 2 N: ð35Þ
Result 4.5. Inequalities (34) and (35) are redundant in the linear programming relaxation of NRFA0.

Proof. Note, first, that constraints yp
ij 6 Mp

ijx
p
ij 8hi; ji 2 A0 8 p 2 N (36) are guaranteed by constraints (22), (21) and (24), for hi; ji 2 A, and by

(23) for the auxiliary arcs. We start by proving the redundancy of (35). Combining the flow conservation constraints
yp

ij ¼ djx
p
ij þ

P
k:hj;ki2A;k – iy

p
jk with constraints (36) for the arcs hj; ki 2 A; k – i, we get yp

ij 6 djx
p
ij þ

P
k:hj;ki2A;k – iM

p
jkxp

jk which is constraint (35)
for hi; ji 2 A0 and p 2 N.

With respect to constraints (34), let p 2 N; hi; ji 2 A0 and hj; ki 2 Aðk – iÞ. If p – j, the constraints (35) and the fact that

Mp
ij ¼ dj þ

P
v :hj;vi2A;v – iM

p
jv permit us to rewrite constraint (35) for hi; ji 2 A0 and p 2 N as follows yp

ij 6 Mp
ij �Mp

jk�
� P

v :hj;vi2A;v – k;iM
p
jvÞx

p
ijþ

Mp
jkxp

jk þ
P

v:hj;vi2A;v – k;iM
p
jv xp

jv . By rearranging, we obtain yp
ij 6 Mp

ij �Mp
jk

� �
xp

ij þMp
jkxp

jk þ
P

v :hj;vi2A;v – k;iM
p
jv xp

jv � xp
ij

� �
. Constraint (27) states

that
P

v :hj;vi2A;v – k;iM
p
jv xp

jv � xp
ij

� �
6 0 leading to yp

ij 6 Mp
ij �Mp

jk

� �
xp

ij þMp
jkxp

jk which is (34) for hi; ji 2 A0; hj; ki 2 A and p 2 N. If p ¼ j the proof

is similar. h

The following result follows from the previous results.

Result 4.6. Inequalities (31)–(35) rewritten with the variables of the NRFA model by using (18) are redundant in the linear programming
relaxation of NRFA0.

Finally, the disaggregated version of the constraints (16) and (17) are, respectively, the constraints:
sp
ij 6 Mp

ij �Mp
jk � Bij

� �
zp

ij þMp
jkxp

jk 8hi; ji; hj; ki 2 Aðk – iÞ 8p 2 N; ð37Þ

sp
ij 6 ðdj � BijÞzp

ij þ
X

k:hj;ki2A;k – i

Mp
jkxp

jk 8hi; ji 2 A 8p 2 N: ð38Þ
Our computational results will show that these constraints are not redundant in the linear programming relaxation of the NRFA0 model.
We denote by NRFA1 the formulation NRFA0 augmented with (29), (30), (37), and (38). We present next the linear programming bounds
obtained with NRFA and NRFA0 and the same formulation augmented with the several sets of inequalities in order to show that the inclu-
sion of the different sets improve the cost of the linear programming solution to the instances presented in Example 3.1.

Example 4.1. Consider the local access network shown in Fig. 4 and the three instances used in Example 3.1. Table 2 depicts the linear
programming bounds obtained with the NRFA formulation, the NRFA0 formulation and this formulation augmented with different sets of
the inequalities presented before, for instances tree10, tree10_Fx2 and tree10_Bx2. The table description is omitted because is similar to
Table 1.

The results show that the value of the linear programming relaxation of the NRFA formulation is quite improved by adding constraints
(26) and (27), which are specially tailored to the new model.

5. Computational tests

5.1. Pre-processing

Pre-processing is an efficient way of reducing the size of the models. In some cases, pre-processing leads to an improvement on the
value of the corresponding linear programming relaxation and to the reduction of the time used to obtain the solutions since eliminating
a variable is equivalent to adding the inequality that sets to zero the value of the same variable. In this section, we show how to reduce
some data coefficients and how to eliminate some variables from the models.
rogramming bound of NRFA formulation. NRFA0 formulation and NRFA0 formulation augmented with the inclusion of different sets of valid inequalities.

nce NRFA NRFA0 NRFA0 + (29) + (30) NRFA0 + (37) + (38) NRFA1 Opt.

0 2012.4 2220.2 2220.2 2221.3 2221.3 2280
0_Fx2 2123.6 2528.9 2528.9 2573.5 2573.5 2620
0_Bx2 1544.9 1682.7 1699.1 1691.8 1705.2 1740
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5.1.1. Coefficient reduction
Recall that the Mij coefficient represents the maximum flow that can circulate in an arc hi; ji and that the Mp

ij coefficient represents a
similar value when the arc is used in the directed path rooted at node p. As referred, the initial values of these coefficients are set equal
to the total demand of the nodes reachable through arc hi; ji. We present next several properties that permit us to define a better upper
bound on the value of these coefficients.

By examining the costs of concentrators and links, it is possible to eliminate some node to concentrator assignments. Given p; j 2 N, Bal-
akrishnan et al. (1995) show how to determine a lower bound to the cost of assign node j to a concentrator located at node p, denoted by Lpj,
and an upper bound to the cost of installing a concentrator at j, denoted by Ujj (see Balakrishnan et al. (1995) for details).

Property 5.1. Let p; j 2 N. If Ujj < Lpj, node p will not serve node j in any optimal solution.
Based on the elimination of node to concentrator assignments, it is possible to reduce or set equal to zero the values of the Mij and Mp

ij
coefficients. The next two properties show how this can be done.

Property 5.2. Let hi; ji 2 A and p 2 N such that the path Ppj includes arc hi; ji: (i) The total demand of the nodes that can be served by a con-
centrator located at node p through arc hi; ji is an upper bound to the Mp

ij coefficient; (ii) The value max
p2N

Mp
ij is an upper bound to the Mij

coefficient.

A particular case of the previous property is as follows:

Property 5.3. Let hi; ji 2 A: (i) If any node p cannot serve node j through arc hi; ji, then Mij ¼ 0 and Mp
ij ¼ 0, for all p 2 N; (ii) If some node p

cannot serve node j through arc hi; ji, then Mp
ij ¼ 0.

Note that in the context of the variables of the FA models, we can only set to zero the Mij coefficient if any node p cannot serve j through
that arc.

Based on the fixed and variable costs of installing a concentrator at node j and of expanding the arc hi; ji, Balakrishnan et al. (1995) deter-
mine an upper bound to the value Mij by calculating the amount of flow from which it is cheaper to locate a concentrator at node j rather than
expanding the arc hi; ji. This value is easily adapted for the Mp

ij coefficients. After using this property, some of the values Mij and Mp
ij may be-

come smaller than the sum of the demands of the nodes reachable after arc hi; ji (or reachable after hi; ji and in paths served by a concentrator
in p in the case of the Mp

ij coefficients). In this case, the following property permits us to calculate these values in a different manner.

Property 5.4. Let hi; ji 2 A0 and hj; ki 2 A, for all k 2 N and k – i: (i) The value dj þ
P

k:hj;ki2A;k – iMjk is an upper bound to Mij; (ii) Let p 2 N.
The value dj þ

P
k:hj;ki2A;k – iM

p
jk is an upper bound to Mp

ij.
5.1.2. Variable elimination
We first show how coefficient reduction permit us to eliminate arcs and paths from the graph D0.

Property 5.5. Let j 2 N and hi; ji 2 A0: (i) If Mij < dj or Mp
ij < dj, for all p 2 N, the arc hi; ji will not be used in any feasible solution; (ii) If

Mp
ij < dj, for some p 2 N, the arc hi; ji will not be used in the directed path rooted at p in any feasible solution (note that (i) and (ii) result

from constraints (11) and (31), respectively).

We can generalize this property for the directed paths in the graph by considering the total demand of a sequence of nodes located
‘‘after” node j. Recall that Pjk is the directed path from node j to node k.

Property 5.6. Let hi; ji 2 A0; k 2 Nðk – jÞ and let us assume that the path Pik includes arc hi; ji. Let Djk be the total demand from the path Pjk:
(i) If Mij < Djk or Mp

ij < Djk, for all p 2 N, then neither the path Pik nor any other path that includes Pik can be included in a feasible solution;
(ii) If Mp

ij < Djk, for some p 2 N, then neither the path Pik rooted at p nor any path rooted at p that includes Pik can be included in a feasible
solution.

Note that if a path Pjk is eliminated from the graph D0 than the assignment of node k to a concentrator located in j is also eliminated.
Finally, the next two properties show how to use the previous properties to eliminate variables from the models.

Property 5.7. Let hi; ji 2 A: (i) If the arc hi; ji will not be used in any feasible solution, then the variables xij; yij; zij and sij can be eliminated
from the FA models as well as the variables xp

ij; y
p
ij; z

p
ij and sp

ij, for all p 2 N, can be eliminated from the NRFA models; (ii) If for some p 2 N the
arc hi; ji will not be used in the directed path rooted at p in any feasible solution, then the variables xp

ij; y
p
ij; z

p
ij and sp

ij, for the same indexes p,
can be eliminated from the NRFA models.

This property permit us to eliminate many variables from the models (this is more notorious in the NRFA model). The value of the Mij

and Mp
ij coefficients (before or after reduction) also permits the elimination of the variables related to the expansion of the links.

Property 5.8. Let hi; ji 2 A: (i) If Mij 6 Bij, then the arc hi; ji will not be expanded in any feasible solution and the variables zij and sij can be
eliminated from the FA models as well as the variables zp

ij and sp
ij, for all p 2 N, can be eliminated from the NRFA models; (ii) If Mp

ij 6 Bij, for
some p 2 N, the variables zp

ij and sp
ij, for the same indexes p, can be eliminated from the NRFA models.

Note also that the elimination of arcs/paths can also lead to a further reduction of several Mij and Mp
ij coefficients (if the corresponding

nodes are no longer reachable from an arc hi; ji, the maximum flow value in this arc can be reduced). Thus, the properties here suggested
may and should be used more than once and iteratively until no further reduction or elimination is possible. The time used in the pre-pro-
cessing is less than 1 s for instances with 100 and 200 nodes and, for instances with 500 nodes, the time is less or equal than to 3 s.

5.2. Computational results

We have compared three classes of flow-based formulations for the local access network expansion problem: FA and FD models (aggre-
gated and disaggregated flow models, respectively) which were previously developed and the new NRFA model. Note, however, that the FA
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model was significantly enhanced with the inclusion of the general lower and upper bounding inequalities. In this section, we present some
computational results to assess their efficiency in solving instances of the problem and, in particular, we want to emphasize the advantages
of developing the new model.

In order to evaluate and compare the linear programming relaxations of our models, we used instances with 100, 200 and 500 nodes.
Some of these instances were already considered in Corte-Real and Gouveia (2007). Here we have included as well the 500-node instances
and different scenarios for the smaller instances. The whole set includes two 100-node tree topologies, two 200-node tree topologies and
two 500-node tree topologies, with two types of tree structure, which differ on the number of sons for each node. In the first case, this
number is less or equal than 3 (trees 101, 201 and 501) and, in the second, is less or equal than 10 (trees 102, 202 and 502). For each tree,
we have generated different set of parameters in order to represent three alternatives to expand the network, denoted by A;B and C, where
A represents the situation that favours concentrator installation, B favours link expansion and C represents a more balanced alternative.
Also, the number of links that need to be expanded, decreases from A to C. For each one of these 18 cases, we also varied some parameters
in order to create different scenarios, considering several values for the node demands, links available capacities and costs. Thus, for each
tree topology and each alternative (A;B or C), we have considered 14 more additional cases: we have divided the demand of each node by 5
and 2 and we have multiplied it by 2 (instances denoted by P/5, P/2 and P � 2, respectively); we have divided the available capacity of each
arc by 2 and we have multiplied it by 2 and 5 (instances denoted by B/2, B � 2 and B�5, respectively); we have divided the variable cost of
the links by 2 and multiplied by 2, 5 and 20 (instances denoted by e/2, e � 2, e � 5 and e � 20, respectively) and we have divided the fixed
cost of concentrators by 2 and multiplied it by 2, 5 and 20 (instances denoted by F/2, F � 2, F � 5 and F � 20, respectively). The results pre-
sented in the following tables correspond to average values obtained with three instances, the three of them generated with the same char-
acteristics. All the tests were run in an Intel Core 2 Duo, 2.00 GHz, personal computer with 2 GB of RAM, and the CPLEX package, version
10.2, has been used to obtain the linear programming bounds and the integer optimal solutions.

Before presenting and comparing in detail the results for the three classes of models, we first introduce Table 3 in order to illustrate the
effect of the pre-processing. This table shows the gaps for the instances with 100 nodes given by the optimal linear programming bound for
formulations FA0; FA1;NRFA0 and NRFA1 described before, with and without the pre-processing, and the corresponding CPU times (the re-
sults correspond to the average of the three alternatives). The first two columns specify the problem instances. The next eight columns
present the gaps given by the value [(OPT � LB)/OPT] * 100 (OPT is the value of the integer optimal solution and LB is the value of the low-
er-bound given by the optimal linear programming solution of the model indicated at the top of the column). Next to this value we present
two other values in parentheses: the first one is the CPU time needed to solve the linear programming relaxation and the second one is the
CPU time needed to obtain the optimal value (time is given in seconds).

The results strongly indicate that pre-processing reduces significantly the gaps, in particular for the FA0 formulation: the maximum
reduction obtained is of 10.89% for FA0, 0.87% for FA1, 1.20% for NRFA0 and 1.22% for NRFA1. Note, also, that the pre-processing has a great
impact in the CPU times of the NRFA model because it eliminates many paths, leading to a substantial number of variables that were elim-
inated from the model. This in turn, leads to a greater reduction in the Mp

ij coefficients. As stated before, it was this pre-processing leading to
a reduction in the Mp

ij coefficients that has motivated the idea for creating the new model.
In order to compare the models, Tables 4–6 depict the gaps given by the optimal linear programming bound of the formulations

FA0; FA1; FD0; FD1, NRFA0 and NRFA1, obtained with the pre-processing described. Each table corresponds to instances with the same number
of nodes and the two structures used. Each column is easily identified by the corresponding name at its top. We present, in the same way as
before, the gap value and, in parentheses, the corresponding CPU times. The designation � indicates that we were not able to solve the inte-
ger model within the time limit of 2 h.

The results indicate that the NRFA models produce, in general, the best linear programming bounds and that the FA models produce, as
expected, the worst. However, we note that for the alternatives A and B the three classes of models produce, in general, small gaps for all
the instances giving some practical confirmation that the previous transformation of the LANEP into a CMSTP with additional constraints
was worth developing (the exceptions are the cases with costs variation opposite to the network expansion type and whose necessity of
expansion is reduced). We can also see that the three classes of models permit, in general, to obtain very quickly the optimal solutions to all
instances with 100 and 200 nodes and to the instances with 500 nodes for alternatives A and B. With respect to the 500 nodes instances and
for alternative C, the models required in general more time. We identify cases where FA models use less time than the others as well as the
NRFA models. Note that, in some problem instances, the NRFA1 formulation produced the optimal solution in seconds while the FA1 and FD1
Table 3
Average results for instances with 100 nodes, with and without pre-processing, for FA and NRFA models.

Instance FA0 FA1 NRFA0 NRFA1

without PP with PP without PP with PP without PP with PP without PP with PP

P/5 16.64(0 + 1) 12.40(0 + 0) 6.66(0 + 1) 6.39(0 + 1) 4.21(9 + 12) 4.09(1 + 4) 3.76(11 + 23) 3.65(1 + 4)
P/2 14.06(0 + 0) 9.33(0 + 0) 4.54(0 + 1) 4.37(0 + 0) 4.03(9 + 15) 3.80(0 + 2) 3.82(12 + 27) 3.60(1 + 2)

P 10.68(0 + 0) 6.12(0 + 0) 2.95(0 + 1) 2.78(0 + 0) 2.48(9 + 10) 2.14(0 + 1) 2.31(12 + 20) 1.99(0 + 2)
Px2 7.53(0 + 0) 3.43(0 + 0) 1.78(0 + 0) 1.52(0 + 0) 1.15(5 + 4) 0.77(0 + 0) 1.13(10 + 11) 0.76(0 + 1)
F/2 8.35(0 + 0) 4.85(0 + 0) 2.96(0 + 0) 2.74(0 + 0) 2.57(8 + 11) 2.17(0 + 1) 2.44(13 + 22) 2.05(0 + 2)
Fx2 14.04(0 + 0) 8.19(0 + 0) 3.05(0 + 1) 2.88(0 + 0) 2.29(8 + 10) 2.09(0 + 1) 2.12(12 + 21) 1.93(0 + 2)

100 Fx5 19.13(0 + 0) 11.30(0 + 0) 3.19(0 + 1) 2.90(0 + 0) 1.58(8 + 9) 1.45 (1 + 1) 1.44(14 + 17) 1.32(1 + 2)
nodes Fx20 27.77(0 + 1) 16.88(0 + 0) 5.33(0 + 1) 4.49(0 + 1) 1.39(9 + 11) 1.33(2 + 2) 1.29(15 + 30) 1.25(3 + 9)

e/2 8.87(0 + 0) 5.93(0 + 0) 2.44(0 + 0) 2.33(0 + 0) 1.89(9 + 8) 1.77(0 + 1) 1.72(13 + 18) 1.62(0 + 2)
ex2 11.60(0 + 0) 5.40(0 + 0) 3.00(0 + 0) 2.79(0 + 0) 2.62(7 + 8) 2.07(0 + 1) 2.45(10 + 22) 1.89(0 + 2)
ex5 13.53(0 + 0) 6.04(0 + 0) 3.87(0 + 1) 3.57(0 + 0) 3.24(6 + 11) 2.50(0 + 1) 3.11(10 + 20) 2.30(0 + 2)

ex20 15.39(0 + 0) 6.54(0 + 0) 4.77(0 + 1) 3.90(0 + 0) 4.05(5 + 11) 2.85(0 + 2) 3.88(9 + 17) 2.66(0 + 2)
B/2 9.82(0 + 0) 4.50(0 + 0) 1.86(0 + 0) 1.62(0 + 0) 1.15(5 + 5) 0.84(0 + 0) 1.09(11 + 13) 0.81(0 + 1)
Bx2 11.17(0 + 0) 7.68(0 + 0) 4.49(0 + 0) 4.31(0 + 0) 3.90(9 + 12) 3.65(0 + 2) 3.70(12 + 21) 3.49(0 + 3)
Bx5 9.81(0 + 0) 7.60(0 + 0) 5.39(0 + 1) 5.21(0 + 0) 4.00(8 + 12) 3.82(0 + 2) 3.77(11 + 18) 3.59(0 + 2)



Table 4
Results for instances with 100 nodes with pre-processing. for structures 101 and 102.

Instance FA1 FA1 FD1 FD1 NRFA1 NRFA1 Instance FA1 FA1 FD1 FD1 NRFA1 NRFA1

101A P/5 2.09 (0 + 0) 1.02 (0 + 0) 0.78(0 + 0) 0.71(0 + 0) 0.75 (0 + 0) 0.69(0 + 0) 102A P/5 3.58(0 + 0) 1.50(0 + 1) 1.08(0 + 1) 1.02 (0 + 2) 1.08(0 + 1) 1.02(0 + 1)
P/2 0.39 (0 + 0) 0.17 (0 + 0) 0.20(0 + 0) 0.15(0 + 0) 0.20 (0 + 0) 0.14 (0 + 0) P/2 0.78(0 + 0) 0.38(0 + 0) 0.32 (0 + 0) 0.32(0 + 0) 0.32(0 + 0) 0.32 (0 + 0)
P 0.02 (0 + 0) 0.01 (0 + 0) 0.01 (0 + 0) 0.01(0 + 0) 0.01 (0 + 0) 0.01 (0 + 0) P 0.17 (0 + 0) 0.06(0 + 0) 0.06 (0 + 0) 0.03(0 + 0) 0.06(0 + 0) 0.03 (0 + 0)
P�2 0.00 (0 + 0) 0.00 (0 + 0) 0.00(0 + 0) 0.00 (0 + 0) 0.00 (0 + 0) 0.00(0 + 0) P�2 0.03(0 + 0) 0.01(0 + 0) 0.01(0 + 0) 0.01 (0 + 0) 0.01 (0 + 0) 0.01(0 + 0)
F/2 0.02 (0 + 0) 0.01 (0 + 0) 0.01 (0 + 0) 0.01(0 + 0) 0.01 (0 + 0) 0.01 (0 + 0) F/2 0.17 (0 + 0) 0.06(0 + 0) 0.06 (0 + 0) 0.03(0 + 0) 0.06(0 + 0) 0.03 (0 + 0)
F�2 0.09 (0 + 0) 0.02 (0 + 0) 0.03(0 + 0) 0.02 (0 + 0) 0.03 (0 + 0) 0.02(0 + 0) F�2 0.23(0 + 0) 0.06(0 + 0) 0.06 (0 + 0) 0.03(0 + 0) 0.06(0 + 0) 0.03 (0 + 0)
F�5 0.36 (0 + 0) 0.03 (0 + 0) 0.04(0 + 0) 0.03 (0 + 0) 0.04 (0 + 0) 0.03(0 + 0) F�5 0.55(0 + 0) 0.11 (0 + 0) 0.14(0 + 0) 0.10 (0 + 0) 0.14 (0 + 0) 0.10(0 + 0)
F�20 2.40 (0 + 0) 0.14 (0 + 0) 0.14 (0 + 0) 0.12(0 + 0) 0.14 (0 + 0) 0.11 (0 + 0) F�20 3.53(0 + 0) 0.25(0 + 0) 0.04 (0 + 0) 0.03(0 + 0) 0.04(0 + 0) 0.03 (0 + 0)
e/2 0.14(0 + 0) 0.07 (0 + 0) 0.08(0 + 0) 0.07 (0 + 0) 0.08 (0 + 0) 0.06(0 + 0) e/2 0.19 (0 + 0) 0.02(0 + 0) 0.03 (0 + 0) 0.02(0 + 0) 0.03(0 + 0) 0.02 (0 + 0)
e�2 0.02 (0 + 0) 0.01 (0 + 0) 0.01 (0 + 0) 0.01(0 + 0) 0.01 (0 + 0) 0.01 (0 + 0) e�2 0.10 (0 + 0) 0.05(0 + 0) 0.03 (0 + 0) 0.03(0 + 0) 0.03(0 + 0) 0.03 (0 + 0)
e�5 0.07 (0 + 0) 0.01 (0 + 0) 0.01 (0 + 0) 0.01(0 + 0) 0.01 (0 + 0) 0.01 (0 + 0) e�5 0.08(0 + 0) 0.04(0 + 0) 0.02 (0 + 0) 0.02(0 + 0) 0.02(0 + 0) 0.02 (0 + 0)
e�20 0.01(0 + 0) 0.00 (0 + 0) 0.00(0 + 0) 0.00 (0 + 0) 0.00 (0 + 0) 0.00(0 + 0) e�20 0.10 (0 + 0) 0.08(0 + 0) 0.09 (0 + 0) 0.08(0 + 0) 0.08(0 + 0) 0.09 (0 + 0)
B/2 0.01(0 + 0) 0.00 (0 + 0) 0.00(0 + 0) 0.00 (0 + 0) 0.00 (0 + 0) 0.00(0 + 0) B/2 0.06(0 + 0) 0.01(0 + 0) 0.02 (0 + 0) 0.01 (0 + 0) 0.02(0 + 0) 0.01(0 + 0)
B�2 0.26 (0 + 0) 0.13 (0 + 0) 0.13 (0 + 0) 0.11 (0 + 0) 0.13 (0 + 0) 0.11 (0 + 0) B�2 0.56(0 + 0) 0.36(0 + 0) 0.28 (0 + 0) 0.28(0 + 0) 0.28(0 + 0) 0.28 (0 + 0)
B�5 1.06(0 + 0) 0.71 (0 + 0) 0.43(0 + 0) 0.41(0 + 0) 0.40 (0 + 0) 0.38(0 + 0) B�5 1.71(0 + 0) 1.12 (0 + 0) 0.81(0 + 1) 0.77(0 + 1) 0.81 (0 + 0) 0.77 (0 + 1)

101B P/5 1.26(0 + 0) 1.03 (0 + 0) 0.96(0 + 1) 0.90 (0 + 1) 0.90 (0 + 2) 0.88(0 + 2) 102B P/5 0.00(0 + 0) 0.00(0 + 0) 0.00 (0 + 0) 0.00(0 + 0) 0.00(0 + 0) 0.00 (0 + 0)
P/2 2.47 (0 + 0) 2.01 (0 + 0) 1.62 (0 + 1) 1.61 (0 + 1) 1.60 (0 + 2) 1.59 (0 + 3) P/2 0.00(0 + 0) 0.00(0 + 0) 0.00 (0 + 0) 0.00(0 + 0) 0.00(0 + 0) 0.00 (0 + 0)
P 1.35(0 + 0) 1.10(0 + 0) 0.78(0 + 0) 0.77 (0 + 1) 0.78 (0 + 2) 0.77(0 + 3) P 0.03(0 + 0) 0.00(0 + 0) 0.03(0 + 0) 0.00(0 + 0) 0.03(0 + 0) 0.00 (0 + 0)
P�2 0.40 (0 + 0) 0.24 (0 + 0) 0.15 (0 + 0) 0.15(0 + 0) 0.15 (0 + 0) 0.15 (0 + 1) P�2 0.00(0 + 0) 0.00(0 + 0) 0.00 (0 + 0) 0.00(0 + 0) 0.00(0 + 0) 0.00 (0 + 0)
F/2 1.35(0 + 0) 1.10(0 + 0) 0.78(0 + 1) 0.77 (0 + 0) 0.78 (0 + 2) 0.77(0 + 3) F/2 0.03(0 + 0) 0.00(0 + 0) 0.03 (0 + 0) 0.00(0 + 0) 0.03(0 + 0) 0.00 (0 + 0)
F�2 1.36(0 + 0) 1.10(0 + 0) 0.79(0 + 1) 0.77 (0 + 1) 0.79 (0 + 3) 0.77(0 + 3) F�2 0.03(0 + 0) 0.00(0 + 0) 0.02 (0 + 0) 0.00(0 + 0) 0.02(0 + 0) 0.00 (0 + 0)
F�5 1.37(0 + 0) 1.10(0 + 0) 0.79(0 + 1) 0.77 (0 + 1) 0.79 (0 + 2) 0.77(0 + 3) F�5 0.04(0 + 0) 0.00(0 + 0) 0.02 (0 + 0) 0.00(0 + 0) 0.02(0 + 0) 0.00 (0 + 0)
F�20 1.45(0 + 0) 1.10(0 + 0) 0.79(0 + 1) 0.77 (0 + 1) 0.79 (0 + 2) 0.77(0 + 4) F�20 0.05(0 + 0) 0.00(0 + 0) 0.02 (0 + 0) 0.00(0 + 0) 0.02(0 + 0) 0.00 (0 + 0)
e/2 0.12(0 + 0) 0.02 (0 + 0) 0.02(0 + 0) 0.01(0 + 0) 0.02 (0 + 0) 0.01 (0 + 0) e/2 0.00(0 + 0) 0.00(0 + 0) 0.00 (0 + 0) 0.00(0 + 0) 0.00(0 + 0) 0.00 (0 + 0)
e�2 1.33(0 + 0) 1.15(0 + 0) 0.78(0 + 0) 0.78 (0 + 0) 0.77 (0 + 1) 0.77(0 + 1) e�2 0.08(0 + 0) 0.11 (0 + 0) 0.00 (0 + 0) 0.00(0 + 0) 0.00(0 + 0) 0.00 (0 + 1)
e�5 3.28 (0 + 0) 2.73 (0 + 0) 2.23(0 + 1) 2.20 (0 + 0) 2.15 (0 + 0) 2.13 (0 + 1) e�5 3.89(0 + 0) 2.38(0 + 0) 1.04(0 + 1) 1.04 (0 + 1) 1.04 (0 + 2) 1.04(0 + 2)
e�20 4.73 (0 + 0) 3.79 (0 + 0) 2.71 (0 + 0) 2.71(0 + 0) 2.59 (0 + 0) 2.59(0 + 0) e�20 8.87(0 + 0) 4.87(0 + 0) 3.44 (0 + 2) 3.37(0 + 2) 3.43(0 + 4) 3.36 (0 + 5)
B/2 0.41(0 + 0) 0.24 (0 + 0) 0.15 (0 + 0) 0.15(0 + 0) 0.15 (0 + 0) 0.15 (0 + 0) B/2 0.00(0 + 0) 0.00(0 + 0) 0.00 (0 + 0) 0.00(0 + 0) 0.00(0 + 0) 0.00 (0 + 0)
B�2 2.46 (0 + 0) 2.01 (0 + 0) 1.62 (0 + 1) 1.61 (0 + 1) 1.60 (0 + 2) 1.59 (0 + 4) B�2 0.00(0 + 0) 0.00(0 + 0) 0.00 (0 + 0) 0.00(0 + 0) 0.00(0 + 0) 0.00 (0 + 0)
B�5 1.20(0 + 0) 1.02 (0 + 0) 0.94(0 + 1) 0.89 (0 + 1) 0.88 (0 + 1) 0.87(0 + 1) B�5 0.00(0 + 0) 0.00(0 + 0) 0.00 (0 + 0) 0.00(0 + 0) 0.00(0 + 0) 0.00 (0 + 0)

101C P/5 32.24(0 + 0) 15.87 (0 + 1) 6.74(0 + 5) 5.50 (0 + 4) 6.45 (0 + 7) 5.19 (1 + 5) 102C P/5 35.21 (0 + 0) 18.90 (0 + 1) 15.37 (1 + 3) 14.10(1 + 4) 15.37 (5 + 13) 14.10 (4 + 15)
P/2 22.66(0 + 0) 10.81(0 + 1) 8.85(0 + 1) 8.08 (0 + 2) 8.45 (0 + 2) 7.85(0 + 2) P/2 29.71 (0 + 0) 12.85 (0 + 1) 12.26(0 + 5) 11.68(0 + 4) 12.21 (2 + 7) 11.69 (3 + 11)
P 15.04(0 + 0) 8.36 (0 + 1) 6.67(0 + 1) 5.95 (0 + 1) 5.88 (0 + 0) 5.40(0 + 0) P 20.09(0 + 0) 7.15(0 + 0) 6.09 (0 + 4) 5.76(0 + 3) 6.06(0 + 6) 5.75 (1 + 5)
P�2 7.83 (0 + 0) 4.71 (0 + 0) 2.60(0 + 0) 2.58(0 + 0) 2.51 (0 + 0) 2.48(0 + 0) P�2 12.35 (0 + 0) 4.18(0 + 0) 1.88(0 + 1) 1.94 (0 + 1) 1.87 (0 + 2) 1.84(0 + 2)
F�2 12.26(0 + 0) 7.92 (0 + 0) 6.60(0 + 1) 6.00 (0 + 0) 5.76 (0 + 0) 5.39(0 + 0) F�2 15.30 (0 + 0) 7.38(0 + 0) 6.41(0 + 3) 6.12 (0 + 2) 6.36(0 + 6) 6.07 (1 + 7)
F�2 20.62(0 + 0) 9.11(0 + 1) 6.99(0 + 1) 6.36 (0 + 1) 6.36 (0 + 0) 5.84(0 + 1) F�2 26.82(0 + 0) 6.96(0 + 0) 5.26 (0 + 4) 4.83(0 + 5) 5.25 (1 + 4) 4.93 (2 + 5)
F�5 30.66 (0 + 1) 10.68 (0 + 1) 5.80(0 + 3) 5.58 (0 + 2) 4.96 (0 + 1) 4.82(0 + 2) F�5 34.79(0 + 0) 5.50(0 + 0) 2.76 (1 + 3) 2.22(1 + 2) 2.74(5 + 5) 2.22 (8 + 5)
F�20 47.23(0 + 2) 16.48(0 + 3) 4.82(1 + 6) 4.47 (1 + 6) 4.68 (1 + 7) 4.43(1 + 14) F�20 46.63(0 + 0) 8.87(0 + 1) 2.79 (2 + 3) 2.63(2 + 2) 2.28(8 + 4) 2.16(16 + 36)
e/2 15.78(0 + 0) 7.70 (0 + 1) 6.32(0 + 1) 5.87 (0 + 2) 5.82 (0 + 0) 5.46(0 + 1) e/2 18.38 (0 + 0) 6.16(0 + 0) 4.77 (0 + 3) 4.24(0 + 2) 4.67 (1 + 5) 4.15(1 + 9)
e�2 13.04(0 + 0) 7.89 (0 + 0) 5.45(0 + 0) 4.48 (0 + 0) 4.79 (0 + 0) 3.90(0 + 0) e�2 17.84 (0 + 0) 7.65(0 + 1) 6.94 (0 + 3) 6.71 (0 + 4) 6.84(0 + 5) 6.62 (0 + 7)
e�5 12.16 (0 + 0) 7.89 (0 + 0) 5.16 (0 + 0) 4.00 (0 + 0) 4.55 (0 + 0) 3.41 (0 + 0) e�5 16.75 (0 + 0) 8.30(0 + 1) 7.34 (0 + 4) 7.28(0 + 4) 7.24(0 + 5) 7.18(0 + 7)
e�20 10.34(0 + 0) 5.75 (0 + 0) 3.86(0 + 0) 2.81(0 + 0) 3.38 (0 + 0) 2.33(0 + 0) e�20 15.20 (0 + 1) 8.81(0 + 1) 7.78 (0 + 6) 7.74(0 + 7) 7.62(0 + 6) 7.58 (0 + 6)
B/2 10.38(0 + 0) 5.18 (0 + 0) 3.18 (0 + 0) 3.15(0 + 0) 2.92 (0 + 0) 2.85(0 + 0) B/2 16.18(0 + 0) 4.32(0 + 0) 1.85(0 + 2) 1.84 (0 + 1) 1.94 (0 + 2) 1.83(0 + 3)
B�2 17.34(0 + 0) 9.42 (0 + 0) 7.97(0 + 1) 7.09 (0 + 1) 7.56 (0 + 1) 6.89(0 + 1) B�2 25.46(0 + 0) 13.87 (0 + 1) 12.48(0 + 5) 12.06 (0 + 5) 12.33 (1 + 7) 12.06(1 + 10)
B�5 16.82(0 + 0) 11.10 (0 + 1) 7.26(0 + 1) 6.90 (0 + 1) 7.26 (0 + 2) 6.88(0 + 3) B�5 24.79(0 + 0) 17.31 (0 + 0) 13.57(0 + 3) 12.64 (0 + 3) 13.57 (1 + 10) 12.64(2 + 6)
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Table 5
Results for instances with 200 nodes with pre-processing. for structures 201 and 202.

Instance FA1 FA1 FD1 FD1 MRFA1 NRFA1 Instance FA1 FA1 FD1 FD1 NRFA1 NRFA1

201A P/5 2.32 (0 + 11) 1.26(0 + 6) 0.87(0 + 2) 0.74 (0 + 2) 0.84 (0 + 0) 0.68 (0 + 0) 202A P/5 2.88 (0 + 17) 1.21 (0 + 8) 0.84(0 + 78) 0.81(0 + 83) 0.82 (0 + 3) 0.79(0 + 5)
P/2 0.57 (0 + 0) 0.20(0 + 0) 0.23(0 + 0) 0.17 (0 + 0) 0.22 (0 + 0) 0.17(0 + 0) P/2 0.82 (0 + 0) 0.30(0 + 0) 0.29(0 + 0) 0.25 (0 + 0) 0.28 (0 + 0) 0.24(0 + 0)
P 0.08 (0 + 0) 0.03(0 + 0) 0.03(0 + 0) 0.03 (0 + 0) 0.03 (0 + 0) 0.03 (0 + 0) P 0.16(0 + 0) 0.06(0 + 0) 0.05(0 + 0) 0.05 (0 + 0) 0.05 (0 + 0) 0.05(0 + 0)
P�2 0.01(0 + 0) 0.01(0 + 0) 0.01 (0 + 0) 0.01(0 + 0) 0.01(0 + 0) 0.01(0 + 0) P�2 0.04 (0 + 0) 0.01 (0 + 0) 0.01 (0 + 0) 0.01(0 + 0) 0.01(0 + 0) 0.01(0 + 0)
F/2 0.07 (0 + 0) 0.03(0 + 0) 0.03(0 + 0) 0.03 (0 + 0) 0.03 (0 + 0) 0.03 (0 + 0) F/2 0.13(0 + 0) 0.05(0 + 0) 0.05(0 + 0) 0.05 (0 + 0) 0.05 (0 + 0) 0.05(0 + 0)
F�2 0.12(0 + 0) 0.03(0 + 0) 0.03(0 + 0) 0.03 (0 + 0) 0.03 (0 + 0) 0.03 (0 + 0) F�2 0.28 (0 + 0) 0.06(0 + 0) 0.05(0 + 0) 0.05 (0 + 0) 0.05 (0 + 0) 0.05(0 + 0)
F�5 0.36 (0 + 0) 0.07(0 + 0) 0.04(0 + 0) 0.03 (0 + 0) 0.03 (0 + 0) 0.03 (0 + 0) F�5 0.60 (0 + 0) 0.09(0 + 0) 0.06(0 + 0) 0.06 (0 + 0) 0.06 (0 + 0) 0.05(0 + 0)
F�20 3.28 (0 + 0) 0.26(0 + 0) 0.18 (0 + 0) 0.15 (0 + 0) 0.18(0 + 0) 0.12(0 + 0) F�20 3.07 (0 + 0) 0.23(0 + 0) 0.06(0 + 0) 0.05 (0 + 0) 0.06 (0 + 0) 0.04(0 + 0)
e/2 0.19(0 + 0) 0.07(0 + 0) 0.07(0 + 0) 0.06 (0 + 0) 0.07 (0 + 0) 0.06 (0 + 0) e/2 0.21(0 + 0) 0.04(0 + 0) 0.06(0 + 0) 0.04 (0 + 0) 0.06 (0 + 0) 0.04(0 + 0)
e�2 0.04 (0 + 0) 0.01(0 + 0) 0.00(0 + 0) 0.00 (0 + 0) 0.00 (0 + 0) 0.00 (0 + 0) e�2 0.13(0 + 0) 0.07(0.0) 0.06(0 + 0) 0.06 (0 + 0) 0.06 (0 + 0) 0.06(0 + 0)
e�5 0.02 (0 + 0) 0.00(0 + 0) 0.00(0 + 0) 0.00 (0 + 0) 0.00 (0 + 0) 0.00 (0 + 0) e�5 0.06 (0 + 0) 0.04(0 + 0) 0.04(0 + 0) 0.04 (0 + 0) 0.04 (0 + 0) 0.04(0 + 0)
e�20 0.02 (0 + 0) 0.00(0 + 0) 0.00(0 + 0) 0.00 (0 + 0) 0.00 (0 + 0) 0.00 (0 + 0) e�20 0.03 (0 + 0) 0.02(0 + 0) 0.02(0 + 0) 0.02 (0 + 0) 0.02 (0 + 0) 0.02(0 + 0)
B/2 0.01(0 + 0) 0.01(0 + 0) 0.01 (0 + 0) 0.01(0 + 0) 0.01(0 + 0) 0.01(0 + 0) B/2 0.05 (0 + 0) 0.02(0 + 0) 0.02(0 + 0) 0.02 (0 + 0) 0.02 (0 + 0) 0.01(0 + 0)
B�2 0.36 (0 + 0) 0.15(0 + 0) 0.14 (0 + 0) 0.13 (0 + 0) 0.13(0 + 0) 0.12(0 + 0) B�2 0.64 (0 + 0) 0.24(0 + 0) 0.22(0 + 0) 0.20 (0 + 0) 0.22 (0 + 0) 0.20(0 + 0)
B�5 1.13(0 + 2) 0.72(0 + 1) 0.52(0 + 1) 0.46 (0 + 1) 0.51(0 + 0) 0.45 (0 + 0) B�5 1.32(0 + 3) 0.78(0 + 4) 0.51 (0 + 17) 0.48 (0 + 27) 0.50 (0 + 3) 0.48(0 + 3)

201B P/5 3.19(0 + 0) 3.07(0 + 1) 2.41 (0 + 5) 2.40 (0 + 6) 2.39 (1 + 14) 2.38 (1 + 10) 202B P/5 0.20 (0 + 0) 0.18 (0 + 0) 0.18 (0 + 1) 0.18(0 + 1) 0.19(1 + 0) 0.18(1 + 1)
P/2 0.83 (0 + 0) 0.67(0 + 1) 0.54(0 + 2) 0.46 (0 + 2) 0.54 (0 + 2) 0.46 (0 + 7) P/2 0.06 (0 + 0) 0.05(0 + 0) 0.05(0 + 1) 0.05 (0 + 1) 0.05 (0 + 1) 0.05(0 + 1)
P 0.40 (0 + 0) 0.32(0 + 0) 0.15 (0 + 1) 0.15 (0 + 1) 0.15(0 + 3) 0.15(0 + 3) P 0.33 (0 + 0) 0.02(0 + 0) 0.01 (0 + 1) 0.00 (0 + 1) 0.01(0 + 1) 0.00(0 + 1)
P�2 0.19(0 + 0) 0.07(0 + 0) 0.02(0 + 0) 0.01(0 + 0) 0.02 (0 + 0) 0.01(0 + 1) P�2 0.27 (0 + 0) 0.10 (0 + 0) 0.00(0 + 1) 0.00 (0 + 1) 0.00 (0 + 1) 0.00(0 + 1)
F/2 0.40 (0 + 0) 0.32(0 + 0) 0.16 (0 + 1) 0.15 (0 + 1) 0.16(0 + 4) 0.15(0 + 2) F/2 0.32 (0 + 0) 0.02(0 + 0) 0.01 (0 + 1) 0.00 (0 + 1) 0.01(0 + 1) 0.00(0 + 1)
F�2 0.40 (0 + 0) 0.32(0 + 0) 0.15 (0 + 1) 0.15 (0 + 1) 0.15(0 + 4) 0.15(0 + 3) F�2 0.34 (0 + 0) 0.02(0 + 0) 0.01 (0 + 1) 0.00 (0 + 1) 0.01(0 + 1) 0.00(0 + 1)
F�5 0.41(0 + 0) 0.32(0 + 0) 0.15 (0 + 1) 0.14 (0 + 1) 0.15(0 + 3) 0.14(0 + 3) F�5 0.35 (0 + 0) 0.02(0 + 0) 0.01 (0 + 1) 0.00 (0 + 1) 0.01(0 + 1) 0.00(0 + 1)
F�20 0.47 (0 + 0) 0.42(0 + 0) 0.15 (0 + 1) 0.14 (0 + 1) 0.15(0 + 2) 0.14(0 + 3) F�20 0.44 (0 + 0) 0.02(0 + 0) 0.00(0 + 1) 0.00 (0 + 1) 0.00 (0 + 1) 0.00(1 + 0)
e/2 0.22 (0 + 0) 0.18(0 + 0) 0.14 (0 + 1) 0.13 (0 + 1) 0.14(0 + 2) 0.13(0 + 2) e/2 0.01(0 + 0) 0.00(0 + 0) 0.01 (0 + 1) 0.00 (0 + 1) 0.01(0 + 1) 0.00(0 + 1)
e�2 1.15(0 + 0) 0.93(0 + 1) 0.67(0 + 2) 0.62 (0 + 2) 0.62 (0 + 2) 0.58 (0 + 5) e�2 0.85 (0 + 0) 0.35(0 + 0) 0.08(0 + 1) 0.05 (0 + 1) 0.08 (1 + 0) 0.05(1 + 1)
e�5 2.49 (0 + 0) 2.11 (0 + 1) 1.44 (0 + 1) 1.42 (0 + 2) 1.33(0 + 1) 1.31 (0 + 2) e�5 2.58 (0 + 0) 1.92 (0 + 1) 0.64(1 + 3) 0.56 (1 + 3) 0.64 (1 + 9) 0.56 (1 + 11)
e�20 4.38 (0 + 1) 3.52(0 + 1) 3.19 (0 + 2) 3.13 (0 + 2) 2.99 (0 + 0) 2.84 (0 + 1) e�20 3.68 (0 + 1) 2.47(0 + 1) 1.78 (1 + 8) 1.66 (1 + 8) 1.76(1 + 14) 1.65 (1 + 12)
B/2 0.19(0 + 0) 0.07(0 + 0) 0.02(0 + 0) 0.01(0 + 0) 0.02 (0 + 0) 0.01(0 + 1) B/2 0.28 (0 + 0) 0.10 (0 + 0) 0.00(0 + 1) 0.00 (0 + 1) 0.00 (0 + 1) 0.00(0 + 1)
B�2 0.82 (0 + 0) 0.67(0 + 1) 0.54(0 + 2) 0.46 (0 + 2) 0.54 (0 + 2) 0.46 (1 + 4) B�2 0.05 (0 + 0) 0.05(0 + 0) 0.05(0 + 1) 0.05 (0 + 1) 0.05 (0 + 1) 0.05(1 + 0)
B�5 3.14(0 + 0) 3.06(0 + 1) 2.40(0 + 5) 2.39 (0 + 6) 2.38 (0 + 11) 2.38 (1 + 11) B�5 0.19(0 + 0) 0.18 (0 + 0) 0.18 (0 + 1) 0.18(0 + 1) 0.18(1 + 0) 0.18(1 + 1)

201C P/5 30.46 (0 + 3) 17.56 (0 + 10) 15.54 (3 + 125) 13.42(3 + 138) 14.80(9 + 116) 12.95(10 + 290) 202C P/5 28.25(0 + 1) 7.83(0 + 1) 7.22(4 + 23) 6.36 (4 + 20) 7.20 (24 + 60) 6.36(25 + 85)
P/2 19.89(0 + 5) 11.92 (0 + 9) 8.55(1 + 50) 7.76 (1 + 50) 7.95 (1 + 28) 7.19(1 + 24) P/2 19.51 (0 + 0) 6.62(0 + 1) 5.55(2 + 21) 5.40 (3 + 14) 5.54 (6 + 25) 5.38(11 + 55)
P 11.76 (0 + 3) 6.24(0 + 3) 4.92(0 + 16) 4.37 (0 + 12) 4.54 (0 + 3) 4.08 (0 + 3) P 13.90(0 + 0) 4.25(0 + 1) 3.49 (1 + 12) 3.43 (1 + 13) 3.48 (2 + 15) 3.43(2 + 18)
P�2 8.04 (0 + 1) 4.80(0 + 1) 4.03(0 + 1) 3.71 (0 + 1) 3.94 (0 + 0) 3.61(0 + 0) P�2 8.26 (0 + 0) 2.72(0 + 1) 1.64 (0 + 2) 1.52(0 + 2) 1.61 (0 + 1) 1.48(0 + 4)
F/2 9.05 (0 + 2) 5.77(0 + 3) 4.17 (0 + 6) 3.90 (0 + 7) 3.95 (0 + 2) 3.68 (0 + 2) F/2 10.60(0 + 1) 4.14 (0 + 1) 3.58 (1 + 14) 3.50 (1 + 17) 3.57 (1 + 11) 3.49(2 + 16)
F�2 16.22(0 + 3) 6.90(0 + 6) 4.80(0 + 18) 4.24 (0 + 16) 4.45 (0 + 4) 3.87 (0 + 5) F�2 18.98(0 + 1) 4.61 (0 + 1) 3.16 (1 + 12) 3.05 (1 + 14) 3.14(3 + 20) 3.04(5 + 42)
F�5 24.54 (0 + 7) 8.19(0 + 7) 4.60(1 + 26) 3.84 (0 + 31) 4.17(0 + 8) 3.38 (1 + 9) F�5 27.50(0 + 1) 6.08(0 + 2) 3.56(3 + 25) 3.38 (2 + 23) 3.56 (11 + 41) 3.37(17 + 98)
F�20 39.94 (0 + 15) 12.68 (0 + 45) 5.01 (3 + 213) 4.42 (3 + 148) 4.49 (2 + 53) 4.06 (4 + 88) F�20 35.04(0 + 1) 6.98(0 + 2) 1.68 (7 + 8) 1.64 (7 + 11) 1.68(25 + 43) 1.63(33 + 51)
e/2 12.12 (0 + 2) 5.28(0 + 3) 3.97(0 + 11) 3.43 (0 + 11) 3.78 (0 + 4) 3.36 (0 + 12) e/2 13.31 (0 + 0) 3.68(0 + 1) 2.64(1 + 8) 2.48 (1 + 8) 2.64 (3 + 14) 2.48(5 + 21)
e�2 11.35 (0 + 4) 6.33(0 + 4) 4.61 (0 + 8) 4.26 (0 + 8) 4.46 (0 + 4) 4.10(0 + 3) e�2 13.28(0 + 2) 4.97(0 + 2) 4.31 (1 + 70) 4.17(1 + 176) 4.31(1 + 12) 4.16 (1 + 15)
e�5 11.15 (0 + 6) 7.49(0 + 9) 4.70(0 + 7) 4.61(0 + 6) 4.61(0 + 1) 4.53 (0 + 2) e�5 12.10 (0 + 1) 5.46(0 + 2) 5.15 (1 + 60) 4.84 (1 + 56) 5.15(1 + 12) 4.84 (1 + 11)
e�20 10.88(0 + 3) 7.68(0 + 4) 4.79(0 + 6) 4.55 (0 + 6) 4.71(0 + 1) 4.48 (0 + 2) e�20 11.02 (0 + 1) 5.62(0 + 1) 5.58 (1 + 18) 5.24 (1 + 18) 5.58 (1 + 8) 5.24(1 + 13)
B/2 11.16 (0 + 4) 5.66(0 + 2) 4.58(0 + 2) 4.27 (0 + 2) 4.37 (0 + 0) 4.04 (0 + 1) B/2 11.88 (0 + 0) 2.94(0 + 1) 1.58 (0 + 3) 1.44(0 + 3) 1.55(0 + 2) 1.37(0 + 3)
B�2 15.69(0 + 3) 10.70 (0 + 5) 8.09(0 + 33) 7.38 (0 + 26) 7.43 (0 + 19) 6.76 (0 + 17) B�2 15.11(0 + 1) 6.72(0 + 1) 5.35(2 + 18) 5.19(2 + 22) 5.34 (3 + 19) 5.18(5 + 52)
B�5 18.61 (0 + 2) 13.70 (0 + 7) 11.80(1 + 53) 11.16 (1 + 47) 11.65 (1 + 47) 11.00 (1 + 161) B�5 18.57(0 + 1) 9.65(0 + 1) 8.81 (2 + 21) 8.66 (2 + 18) 8.78 (9 + 40) 8.64(8 + 38)
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formulations did not provide the solution within the given time (see, for example, instances 502A_P/5, 501C_Fx2 and 501C_Bx5). Alterna-
tive C is the one that clearly presents the worst results with respect to the gaps values as well as the CPU times because it represents a more
balanced alternative and the need to expand the network is smaller than in the other cases. We can also see that the alternatives C and B are
the most dependent on the tree structure.

When we compare the results of the augmented formulation with the original formulation, for each class, or compare the results be-
tween the augmented formulations, the results indicate that the gaps given by the FD1 and NRFA1 formulations are significantly better than
the corresponding gaps from the FA1 model. These improvements are more accentuated for the alternative C. When we compare the gaps
between the formulations NRFA1 and FD1, the differences are less significant (less than 0.5 percentage points), with NRFA1 still providing
the best results. The results also show that it is the FA class that benefits more from the inclusion of the valid inequalities. This is expected,
since many of the inequalities introduced in FA0, leading to FA1, are redundant in the linear programming relaxation of FD0 and NRFA0. The
comparison between the FA0 and FA1 models indicates a maximum reduction of nearly 40% on the gap values (see instance 102C_Fx20). For
the FD and NRFA classes, the comparison between the original formulation and the corresponding augmented model show a maximum
reduction of 2% on the gap values.

6. Conclusion

We have proposed a new flow-based model for the local access network expansion problem. We have shown that the new model has a
linear programming relaxation that dominates the linear programming relaxation of a single-commodity flow model. This result is signif-
icantly enhanced by the fact that the linear programming relaxation of the new model also implies a large set of inequalities defined in the
variables space of the single-commodity flow model. Furthermore, the model is also adequate for coefficient reduction and variable elim-
ination, permitting us to obtain an extended flow-based model with much fewer variables (in some cases, the number of variables is in the
same order of the number of variables of the aggregated FA model) and a tighter linear programming relaxation. Although there is no dom-
inance relationship between the linear programming relaxation of the new model and the linear programming relaxation of the previously
presented disaggregated flow model, the results indicate that the new model is preferable since it leads, in general, to smaller gaps (in fact,
in no case did the FD models produce a better gap) and to similar or faster solution times. As a conclusion, we think that these network
flow-based approaches, and here significantly enhanced by the new NRFA model, are a good alternative to solve the local access network
expansion problem.
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